skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chaudhuri, Subhrajyoti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article studies fine motor strategies for precise spatial manipulation in close-to-body interactions. Our innate ability for precise work is the result of the confluence of visuo-tactile perception, proprioception, and bi-manual motor control. Contrary to this, most mixed-reality (MR) systems are designed for interactions at arms length. To develop guidelines for precise manipulations in MR systems, there is a need for a systematic study of motor strategies including physical indexing, bi-manual coordination, and the relationship between visual and tactile feedback. To address this need, we present a series of experiments using three variations of a tablet-based MR interface using a close-range motion capture system and motion-tracked shape proxies. We investigate an elaborate version of the classic peg-and-hole task that our results strongly suggests the critical need for high precision tracking to enable precise manipulation. 
    more » « less